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Abstract

Earth surface systems are controlled by a combination of global and local factors, which
cannot be understood without accounting for both the local and global components.
The system dynamics cannot be recovered from the global or local controls alone.
Ground forest inventory is able to accurately estimate forest carbon stocks at sample5

plots, but these sample plots are too sparse to support the spatial simulation of carbon
stocks with required accuracy. Satellite observation is an important source of global
information for the simulation of carbon stocks. Satellite remote-sensing can supply
spatially continuous information about the surface of forest carbon stocks, which is
impossible from ground-based investigations, but their description has considerable10

uncertainty. In this paper, we validated the Lund-Potsdam-Jena dynamic global
vegetation model (LPJ), the Kriging method for spatial interpolation of ground sample
plots and a satellite-observation-based approach as well as an approach for fusing
the ground sample plots with satellite observations and an assimilation method for
incorporating the ground sample plots into LPJ. The validation results indicated that15

both the data fusion and data assimilation approaches reduced the uncertainty of
estimating carbon stocks. The data fusion had the lowest uncertainty by using an
existing method for high accuracy surface modeling to fuse the ground sample plots
with the satellite observations (HASM-SOA). The estimates produced with HASM-SOA
were 26.1 and 28.4 % more accurate than the satellite-based approach and spatial20

interpolation of the sample plots, respectively. Forest carbon stocks of 7.08 Pg were
estimated for China during the period from 2004 to 2008, an increase of 2.24 Pg from
1984 to 2008, using the preferred HASM-SOA method.

1 Introduction

Biomass dynamics reflect the potential of vegetation to act as a carbon sink over the25

long-term, as they integrate photosynthesis, autotrophic respiration and litter fall fluxes
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(Thurner et al., 2014). Forest ecosystems cover more than 41 millionkm2 of the Earth’s
land surface and forests are thought to contain about half of the carbon in terrestrial
biomes (Prentice et al., 2001). Forests play an important role in the active mitigation of
atmospheric CO2 through increased carbon stocks. The fixation of atmospheric CO2
into plant tissue through the process of photosynthesis is one of the most effective5

mechanisms for offsetting carbon emissions (Canadell and Raupach, 2008; Gonzalez-
Benecke et al., 2010).

Carbon sequestration by trees is the best way to store a large amount of terrestrial
carbon over long durations (Jung et al., 2013). Understanding carbon stocks and the
underlying driving forces at scales ranging from local to global is crucial for accurately10

predicting future changes in atmospheric carbon dioxide (Yu et al., 2014). However,
substantial uncertainties remain in current model estimates of terrestrial carbon and
there is an increasing need to quantify and reduce these uncertainties (Barman et al.,
2014; Ahlstrom et al., 2012).

This represents a substantial challenge given the large number and variety of15

methods and data that have been used to prepare estimates of terrestrial carbon thus
far. Five kinds of approaches – ground-observation-based estimation, satellite-based
estimation, mechanism models, mechanism models combined with ground and/or
satellite observations, and the fusion of ground and satellite observations – can be
distinguished and the commentary that follows show how each of these approaches20

has been used to estimate carbon stocks in various areas with varying levels of
uncertainty to date.

Many of the ground-observation based studies have used allometric regression
models to convert forest inventory data to estimates of aboveground biomass with
varying levels of success (e.g., Chave et al., 2005; Strand et al., 2008; van Breugel25

et al., 2011). Validation in Colombian forests, for example, indicated that the standard
deviation of the total biomass estimates was 39.1 % when the allometric model included
only tree diameter at breast height (D) as an explanatory variable, < 25.6 % when
the total height (H) of the trees, wood density (ρ) and D were used as explanatory
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variables, and 35.7 % when ρ and D were used as explanatory variables (Alvarez
et al., 2012). Sierra et al. (2007) estimated the uncertainty of estimates of total carbon
stocks for the tropical forest of Colombia at 11 % for primary forests and 5 % for
secondary forests using Monte Carlo simulation. In another study, Kearsley et al. (2013)
determined that aboveground carbon stocks would be over-estimated by 24 % in the5

Central Congo Basin if the best available H–D relationships derived for Central Africa
were used. And finally, Navar (2009) found that the total variation of biomass explained
by allometric equations was 89 % on average for forests in northwestern Mexico.

The problem or challenge with this kind of approach is that the estimates of carbon
stocks are usually based on the upscaling of sparse forest inventory data (Liski et al.,10

2000; Thurner, 2014). Such approaches provide poor spatial resolution and high
uncertainty because forest inventories are always limited, especially in remote areas.
For example, the aboveground woody carbon accumulation rate was estimated to be
10.0 gCm−2 yr−1 on the Owyhee Plateau of southwestern Idaho in the US during the
period 1946–1998 based on a wavelet and texture method, but only 3.3 gCm−2 yr−1

15

based on field collection data (Strand et al., 2008). Similarly, the uncertainty of plot-
based estimates of carbon change in a temperate rainforest in New Zealand was
78.1 % (Holdaway et al., 2014) and a standardized inventory of total carbon storage
in boreal forests (Bradshaw and Warkentin, 2015) was between 1.3 and 3.8 times
larger than any previous mean estimates (Apps et al., 1993; Pan et al., 2011). Some20

recent work has improved the accuracy of ground-observation-based carbon stock
estimates. For instance, the Global Wood Density database has improved the accuracy
of regional wood density estimates used for carbon stock assessments by 17 % (Flores
and Coomes, 2011) and the component ratio method decreased the uncertainties of
US forest carbon stock estimates by an average of 16 % (Domke et al., 2012).25

Satellite-observation based methods have been widely used for the estimation of
aboveground forest carbon stocks, due to the better availability, broad coverage and
finer temporal resolution they offer compared to conventional field surveying (Heo et al.,
2006; Hyyppä et al., 2000; Tomppo and Halme, 2004).
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Air- and space-borne remote sensing platforms provide continuous spatial
information over large areas in contrast to field inventory where information is generally
limited to plots or small areas (Petrokofsky et al., 2012). Remote sensing methods have
been used for land cover discrimination to monitor reforestation and/or deforestation
and to estimate aboveground forest carbon stocks. For land cover discrimination,5

both optical and radar remote sensing have proved successful. For forest carbon
stock estimation, radar is most appropriate, at least until light detection and ranging
(LiDAR) is made available from satellite platforms (Patenaude et al., 2005). In one
such application, a forest carbon density map at a spatial resolution of 0.01◦ was
created using radar remote sensing and used to estimate carbon stocks in Northern10

Hemisphere boreal and temperate forests. The uncertainty of these estimates fell within
the range of 30–40 % (Thurner et al., 2014).

Similarly, WorldView-2 satellite imagery was integrated with small footprint airborne
LiDAR data to estimate tree carbon at the species level in the tropical forest of
Nepal. The validation results showed that the regression models which incorporated15

the first and last LiDAR returns were able to explain up to 94, 78, 76, 84 and 78 %
of the variations in carbon estimates for the four dominant tree species – Shorea
robusta, Lagerstroemia parviflora, Terminalia tomentosa, Schima wallichii – and other
tree species, respectively (Karna et al., 2015). These kinds of results are promising;
however, a comprehensive crowd-sourced survey in Guyana indicated that estimates20

based on remotely sensed data may be less accurate than is commonly assumed (Butt
et al., 2015).

A large number and variety of mechansim-based simulation models have also been
proposed and used to estimate forest carbon stocks. The Physiological Principles
in Predicting Growth (3-PG) model, for example, calculates the total carbon fixed25

from utilizable, absorbed photosynthetically active radiation, obtained by correcting
the photosynthetically active radiation absorbed by the forest canopy for the effects
of soil drought, atmospheric vapor pressure deficits, and stand age (Landsberg and
Waring, 1997). Validation using age-related changes in carbon storage and allocation
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in a Chinese fir plantation growing in southern China indicated that this particular model
predicted approximately 90 % of the variability in field measurements for tree diameter
at breast height and litterfall (Zhao et al., 2009). The Biome-BGC (biogeochemical
cycles) model, on the other hand, extends the Forest-BGC model (Running and
Coughlan, 1988) and simulates above- and below-ground carbon, water, and nitrogen5

cycles for different vegetation types. This model is strongly controlled by LAI and
climate (Schmid et al., 2006) and has been validated in grassland sites in Hungary
and two independent forest sites in Italy, yielding correlation coefficients between
measurement and simulation data of 0.81 in grassland ecosystems (Hidy et al., 2012)
and 0.83 at forested sites (Chiesi et al., 2007).10

Several Dynamic Global Vegetation Models (DGVMs) have also been developed by
various research groups. These include LPJ (Sitch et al., 2003), IBIS (Foley et al.,
1996; Kucharik et al., 2000), MC1 (Daly et al., 2000), HYBRID (Friend et al., 1995),
SDGVM (Woodward et al., 1998), VECODE (Brovkin et al., 1997), and ED (Moorcroft
et al., 2001; Medvigy et al., 2009). These models use time series of climate data and15

given constraints of latitude, topography and soil characteristics, simulate the monthly
or daily dynamics of ecosystem processes with varying levels of uncertainty. An
Integrated Science Assessment Model (ISAM) has also been developed by combining
biogeochemical components with the detailed biogeophysical schemes of land surface
models (Barman et al., 2014). Validation studies have shown that annual Gross20

Primary Production (GPP) bias at tropical evergreen tree sites was 15 % of site level
GPP, increasing to 20 % at northern mid- and high-latitude broadleaf deciduous and
needleleaf evergreen tree sites, and 20–30 % for non-tree sites with savanna, grass,
and shrub land vegetation types. The Carbon Budget Model of the Canadian Forest
Sector (CBM-CFS3), on the other hand, incorporates a forest C budgeting framework25

that can be applied at the stand-, regional-, and national-scales (Kurz et al., 2009). The
ecosystem total C stocks estimated by CBM-CFS3 explained just 54 % of the variability
in ground plot-based estimates (Shaw et al., 2014).
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And finally, an innovative and forward-looking Game-Theoretic Allocation Model
(GTAM) has been used to investigate how: (1) optimally competitive tree allocation
would change in response to elevated atmospheric CO2 along a gradient of nitrogen
and light availability; and (2) how those changes would affect carbon storage in living
biomass (Dybzinski et al., 2015). The application of GTAM using local information5

incorporates considerable uncertainty because trees competitively allocate carbon
and nutrients differently under differing constraints of water, nutrients, light, and
CO2 availability (Dybzinski et al., 2011, 2013; Franklin et al., 2012; Farrior et al.,
2013; McMurtrie and Dewar, 2013). However, the acquisition of global information on
multiple resource constraints may help to reduce the uncertainty of mechanism-based10

predictions of carbon sequestration in the future.
Several studies have also proposed methods that combine ground-observation,

satellite-observation, and mechanism-based models to estimate carbon stocks.
Satellite-based remote sensing data can be combined with field observations on
a pixel-by-pixel basis, for example, to provide more accurate estimates of the spatial15

distributions of forest biomass and carbon stocks (Jung et al., 2013). Hence, Liu
et al. (2002) estimated the annual carbon sources and sinks in Canada’s forests at
a 1 km2 resolution for the period 1901–1998 using the Boreal Ecosystem Productivity
Simulator (BEPS) that integrates remote sensing imagery, gridded climate, soils and
forest inventory data. The results showed the simulated aboveground biomass values20

for mixed and deciduous forest types were about 30 % larger than the inventory data
for Canada’s forests (Liu et al., 2002; Chen et al., 2003). Stuemer et al. (2010) also
combined satellite remote sensing data with in situ national forest inventory data
to estimate aboveground woody biomass and forest carbon stocks for a test site in
Thuringia, Germany. The k nearest neighbor (kNN) method was used to expand the25

terrestrial point observations and provide spatially explicit wall-to-wall coverage by
utilizing similarities in the spectral image space of the remote sensing data. Validation
results showed that the relative root mean square errors (RMSEs) of the self-organizing
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map (SOM) and the kNN method ranged between 66.3 and 70.49, and 44.85 and
55.58 %, respectively (Stuemer et al., 2010).

Several other approaches have fused ground- and satellite-observation data within
one or more formal models. Yuan et al. (2007), for example, used the light use efficiency
(LUE) daily GPP model from eddy covariance (EC) measurements. This EC-LUE5

model is driven by four variables: (1) NDVI; (2) photosynthetically active radiation
(PAR); (3) air temperature; and (4) the Bowen ratio of sensible to latent heat flux. The
model was calibrated and validated using 24 349 daily GPP estimates derived from 28
eddy covariance flux towers in the AmeriFlux and EuroFlux networks, and the results
showed that EC-LUE explained 85 and 77 % of the observed variations in daily GPP10

for the calibration and validation sites, respectively. The GloPEM model has also been
used to estimate GPP (Prince and Goward, 1995; Singh et al., 2011). This model is
based on physiological principles and uses satellite-based remotely sensed data with
the production efficiency concept, in which the canopy absorption of photosynthetically
active radiation (APAR) is used with a conversion “efficiency”, to estimate GPP. The15

Carnegie Ames Stanford Approach (CASA), on the other hand, simulates light-use
efficiency and has been applied using AVHRR satellite data at a regional scale to
estimate seasonal and annual carbon fluxes as Net Primary Production (NPP) (Potter
et al., 1993, 2011). Applications of the GloPEM and CASA models in China, however,
produced relative errors of annual mean NPP of ∼ 35 % (Gao and Liu, 2008).20

This particular article describes a series of experiments to model the uncertainty
associated with estimating forest carbon stocks in China. There were three goals as
follows:

1. To choose a variety of methods for estimating carbon stocks and to calculate the
uncertainty associated with each of these methods.25

2. To choose and compare the best estimates at the national scale with previously
published estimates.

3. To examine the variability in forest carbon stocks by region and forest type.
19542
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The choice of forest carbon stocks in China was important given the large size and fast
pace of change in China and the importance of terrestrial vegetation and particularly
forests as a way to mitigate rising CO2 levels in the atmosphere. The remainder of
this article is divided into four parts: Sect. 2 reviews previously published estimates
of carbon stocks in China; Sect. 3 describes the overall experimental design and the5

specific methods and data that were used in this work; Sect. 4 reports the results, and
the fifth and final section summarizes the major findings and offers some suggestions
for future work.

2 Previously published estimates of forest carbon stocks in China

Several studies have estimated the forest carbon stocks in China using one of the10

aforementioned estimation methods.
Piao et al. (2005), for example, used a satellite-based approach and estimated that:

(1) the total forest biomass of China averaged 5.79 PgC during the period 1981–1999,
with an average biomass density of 4.531 kgCm−2; and (2) the total forest biomass C
stock increased from 5.62 PgC in the early 1980s to 5.99 PgC by the end of the 1990s,15

giving a total increase of 0.37 PgC and an annual sequestration rate of 19 TgCyr−1.
Zhang et al. (2007), on the other hand, analyzed seven forest inventories from 1973 to
2008 and suggested that the total biomass carbon stocks of all forest types increased
by 65 % during this period, reaching 8.12 PgC in 2008.

Wang et al. (2007) used the Integrated Terrestrial Ecosystem C-budget model20

and estimated that China’s forests were a source of 21.0±7.8 TgCyr−1 due to
human activities during the period 1901–1949 and that this flux increased to 122.3±
25.3 TgCyr−1 due to intensified human activities during the period 1950–1987.
However, these forests became large sinks of 176.7±44.8 TgCyr−1 during the period
1988–2001 owing to large-scale plantation and forest regrowth in previously disturbed25

areas (see the description of the Grain for Green Program below) as well as climatic
warming, atmospheric CO2 fertilization, and N deposition.

19543

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/19535/2015/bgd-12-19535-2015-print.pdf
http://www.biogeosciences-discuss.net/12/19535/2015/bgd-12-19535-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 19535–19577, 2015

Modeling the
uncertainty

of estimating forest
carbon stocks in

China

T. X. Yue et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Yang and Guan (2008), on the other hand, utilized the continuous Biomass
Expansion Factor (BEF) method with field measurements of forests plots in different
age classes and forest inventory data, and showed that the carbon density of the
forests in the Pearl River Delta increased by 14.3 % from 19.08 to 21.81 kgCm−2 during
the period 1989–2003. Similarly, Piao et al. (2009) reported that China’s terrestrial5

ecosystems were a net carbon sink of 0.19–0.26 Pg C yr−1 and that they absorbed
28–37 % of the fossil carbon emissions during the 1980s and 1990s. However, their
results also showed that northeast China is a net source of CO2 to the atmosphere due
to the over-harvesting and degradation of forests, while southern China accounts for
more than 65 % of the carbon sink, which can be attributed to regional climate change,10

large-scale plantation programs started in the 1980s, and shrub recovery (Piao et al.,
2009).

Guo et al. (2010) used three different approaches – the mean biomass density
(MBD), the mean ratio (MR), and the continuous biomass expansion factor (BEF)
method (CBM) – with forest inventory data to estimate China’s forest biomass C stocks15

and their changes from 1984 to 2003. The MBD, MR, and BEF estimated that forest
biomass C stocks increased from 5.7 to 7.7, 4.2 to 6.2, and 4.0 to 5.9 PgC, respectively.

Deng et al. (2011) deployed a GIS approach and defined the vegetation carbon sink
as the carbon sequestration from the atmosphere (1.63×NPP), the vegetation carbon
stock as the carbon content that aboveground vegetation holds, and the soil carbon20

stock as the carbon content that soil organic matter holds. These author’s estimated
vegetation and soil carbon stocks of 1.58 and 1.41 PgC, respectively in the forest
ecosystems of China for the period 1981–2000.

Ni (2013) used available national-scale information to estimate that: (1) the mean
vegetation carbon in China was 36.98 Pg and mean soil carbon was 100.75 PgC; and25

(2) that the forest and grassland sectors supported mean carbon stocks of of 5.49 and
1.41 PgC, respectively.

The aforementioned studies show that the forest ecosystems of China store steadily
increasing stocks of carbon and that these forest stands have great potential to absorb
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more biomass carbon in the future due to large fractions of young and middle-aged
forests and programs to promote the conservation of soil and biological resources.

The Grain for Green program, which was launched in 1999 and aims to restore the
country’s forests and grasslands to prevent soil erosion, has emerged as one of the key
drivers of carbon sequestration. This program targets land with slopes> 25◦ (Xu et al.,5

2006; Yue et al., 2010c) and has been implemented in four phases: (1) a pilot phase
(1999–2001); (2) an initial construction phase (2002–2010); (3) a consolidation phase
(2011–2013); and (4) a second construction phase to be built around a new round of
Grain for Green program expenditures (2014–2020).

The pilot program launched in 1999 focused on three provinces: Gansu, Shaanxi10

and Sichuan. Approximately 381 000 ha of farmland was converted into forestland
and 66 000 ha of bare land was reforested. In 2000, the program was expanded to
17 provinces, and the converted farmland and reforested bare land totals grew to
410 000 and 449 000 ha, respectively. By 2001, 20 provinces were involved in the
program and 420 000 and 563 000 ha of farm and bare land had been reforested,15

respectively (Table 1). The national Grain for Green program was launched in China
in 2002 and by the end of 2010, 14.667 million ha of farmland had been converted
to forest or grassland and 17.333 million ha of bare land had been reforested. During
the consolidation phase from 2011 to 2013, scientific monitoring and management of
the converted and reforested lands was strengthened to sustain the aforementioned20

achievements of the Grain for Green program over the long-term.
To grow and consolidate these gains, the potential for farmland conversion at the

county level during the period 2014–2020 was estimated in 2014 by counting up
farmers’ voluntary applications to determine how large an area could be converted
to forest or grassland. By 2020, 2.827 million ha of farmland could be converted, which25

includes 1.449 million ha of farmland with slopes> 25◦, 1.133 million ha of cultivated
land threatened by desertification, and 247 000 ha of farmland with slopes between 15
and 25◦ around the Danjiangkou and Three Gorges reservoirs.
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The results from this latest phase of the Grain for Green program are encouraging.
Participating farmers can choose whether farmland is to be converted to forest or
grassland, and which species will be planted, and they will receive a CNY 22 500
subsidy for every hectare of farmland converted to forest or grassland. In 2014,
322 000 ha were converted to forest and 11 000 ha were converted to grassland, and5

in 2015 another 667 000 ha of farmland will be converted to either forest or grassland.
All these published results relied on either ground- or satellite-observation-based

estimation unlike our own work in which we have tried to fuse these data sources to
reduce the uncertainty associated with the final carbon stock estimates.

3 Experimental design10

3.1 Forest distribution data

The forest distribution database of China was created using the Vegetation Atlas
of China (Editorial Board of Vegetation Map of China, 2001) and the European
Space Agency’s GlobCover 2009 database (http://globalchange.nsdc.cn). The forest
distribution data covers 161 plant biomes, including five classes of deciduous needle-15

leaved trees, 57 classes of evergreen needle-leaved trees, 39 classes of deciduous
broad-leaved trees, 56 classes of evergreen broad-leaved trees and four classes of
mixed trees (Fig. 1).

3.2 Forestry inventory database (FID)

The national FID for the period 2004–2008 includes 160 000 permanent sample plots20

and 90 000 temporary sample plots scattered across China. The biomass density of
each forest type in each province was calculated from timber volume, using a BEF
(Table 2). The carbon density (CD) of each forest type in each province was calculated
next by multiplying the biomass density by a carbon factor (CF) (Table 3). And finally,
the carbon stocks (CS) of each forest type in each province were calculated by25
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multiplying the CD by the area of that forest type. The total CS in China is a sum
of the CS of all of the forest types in the 31 provinces of China, excluding Taiwan, Hong
Kong and Macao.

The following formulations were used to calculate the forest CS in China:

TCS =
M∑
i=1

N∑
j=1

(Ai ,j ×BCDi ,j )×10−12 (1)5

BCDi ,j =Wi ,j ×CFi (2)

Wi ,j = BEFi × Vi ,j (3)

BEFi ,j = ai +
bi
Vi ,j

(4)

where TCS is the total forest CSs of China (Pg); BCDi ,j is the area weighted mean

biomass CD of the i th forest type in the j th province (kgm−2); Ai ,j is the area of the i th10

forest type in the j th province (m2); M and N refer to the numbers of forest types and
provinces in China, respectively; Wi ,j is the area weighted mean forest biomass of the

i th forest type in the j th province (kgm−2); CFi is the CF of the i th forest type; Vi ,j is the

area weighted mean timber volume of the i th forest type in the j th province (m3 m−2);
BEFi is the BEF of the i th forest type (kgm−3); and ai (kgm−3) and bi (kgm−2) are15

constants of the i th forest type to be simulated.
The mean CFi of all coniferous forest types was used for coniferous mixed forest. The

mean CFi of all broad-leaved forest types was used for broad-leaved mixed forest. The
mean CFi of all broad-leaved and coniferous forest types was used for broad-leaved
and coniferous mixed forest.20

3.3 Satellite-observation-based approach (SOA)

The SOA used the monthly NDVI at a spatial resolution of 1km×1km from the Earth
Observation System’s moderate-resolution imaging spectroradiometer (EOS MODIS)
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(Piao et al., 2009). The CD from the FID data was matched with the NDVI data through
the updated map of forest in China reproduced in Fig. 1.

The biomass carbon density (BCD) mirrored the latitude, longitude and maximum
value of the monthly-averaged NDVI values during the Seventh National Forest
Inventory conducted from 2004 to 2008:5

BCDj = 93.351ln(NDVIj )−2.96Latj −21.388Lonj +0.047Lat2j +0.091Lon2
j +1339.03 (5)

where NDVIj is the mean of the maximum values of the monthly-averaged NDVI
values during the period 2004–2008 in the j th province and Latj and Lonj refer to
the latitude and longitude of the center of the j th province, respectively. The coefficient
of correlation (R = 0.91) and significance (P < 0.001) show how latitude, longitude, and10

NDVI explained 83 % of the variability in BCD.

3.4 Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM)

The LPJ-DGVM (Sitch et al., 2003) was also implemented and used to estimate the
carbon stocks of China. This particular model combines process-based, large-scale
representations of terrestrial vegetation dynamics and land–atmosphere carbon and15

water exchanges in a modular framework as a component of coupled Earth system
models. It has been used to simulate global totals and spatial distributions of soil,
litter and vegetation carbon pools and net primary production at a spatial resolution
of 0.5◦ ×0.5◦ (Cramer et al., 2001; Sitch et al., 2003; Venevsky and Maksyutov, 2007).
An investigation into spatio-temporal carbon balance patterns resulting from forcing20

LPJ with output from 18 climate models of the CMIP5 (Coupled Model Intercomparison
Project Phase 5) ensemble showed that the terrestrial biosphere becomes a net source
of carbon in 10 of the 18 simulations adding to the atmospheric CO2 concentrations,
while the remaining eight simulations indicate the terrestrial biosphere becomes a net
sink for carbon (Ahlstroem et al., 2012).25
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3.5 High accuracy surface modeling (HASM)

HASM was developed for efficiently fusing satellite- with ground-observations to find
solutions for error problems which have long troubled earth surface modeling (Yue,
2011). HASM has been successfully used to construct digital elevation models (Yue
et al., 2007, 2010a, b; Yue and Wang, 2010; Chen and Yue, 2010; Chen et al., 2013a,5

b), model surface soil properties (Shi et al., 2011) and soil pollution (Shi et al., 2009),
fill voids in the Shuttle Radar Topography Mission (SRTM) dataset (Yue et al., 2012),
simulate climate change (Yue et al., 2013a, b; Zhao and Yue, 2014a, b), fill voids
in remotely sensed XCO2 surfaces (Yue et al., 2015a), and to analyze ecosystem
responses to climatic change (Yue et al., 2015b). In all of these applications, HASM10

produced more accurate results than the classical methods (Yue et al., 2015c).

3.6 Estimation of carbon stocks

Forest carbon stocks and carbon densities were estimated by methods of spatial
interpolation, SOA, LPJ, data fusion and data assimilation. The spatial interpolation
provided an effective approach to construct a continuous surface from the FID by15

means of Kriging; it took advantage of limited observation data to estimate the most
plausible spatial distribution by filling in missing data. The data fusion approach
integrated the forest inventory and satellite data into a consistent, accurate and useful
representation using HASM (HASM-SOA); the aim of the data fusion was to improve
the quality of the information so that it was more accurate than would be possible if the20

data sources had been used individually. The data assimilation incorporated FID into
LPJ by means of HASM (HASM-LPJ); the aim of the data assimilation was to derive
accurate estimates of the current and future states of the forest carbon stocks in China.
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3.7 Validation

The uncertainties of the carbon stock estimates reported in earlier studies relied on
several different concepts and metrics. The same formula for absolute and relative
error should be used to evaluate all estimates of carbon stocks so that the estimation
results are comparable. We calculated the mean absolute errors (MAE) and mean5

relative errors (MRE), respectively, as:

MAE =
1
n

n∑
i

|oi − si | (6)

MRE =
MAE

1
n

∑n
i |oi |

(7)

where oi represents the forest carbon stocks at the i th control point; si represents the
simulated value at the i th control point; and ni is the total number of control points used10

for validation.
Cross-validation was comprised of four steps: (1) 5 % of the sample plots from the

national forest inventory were removed for validation; (2) the spatial distribution of
average forest CSs in China during the period 2004–2008 were simulated at a spatial
resolution of 5km×5km using the remaining 95 % of the sample plots from the national15

forest inventory by means of the different methods; (3) the MAEs and MREs were
calculated using the 5 % validation set; and (4) the 5 % validation set was returned to
the pool for the next iteration, and another 5 % validation set was removed. This final
process was repeated until the all sample plots were used for validation at least one
time and the simulation error statistics could be calculated for each sample plot.20
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4 Results

The five maps of forest biomass mean annual carbon stocks during the period 2004–
2008 reproduced with each of the aforementioned methods shows how each of the
methods was able to generate the same overall patterns based on the underlying
forest cover on the one hand, and how the estimates varied using each of these5

methods over large parts of the China on the other hand (Fig. 2). This variability
raises questions related to the reliability of the estimates produced with the five
aforementioned approaches.

The cross-validation results indicated that LPJ, Kriging and SOA had larger errors,
with MREs of 79.33, 50.12 and 48.77 %, respectively. LPJ and Kriging over-estimated10

the carbon stocks, while SOA under-estimated the carbon stocks (Table 4). Accuracy
was considerably improved when the forest inventory and satellite data were fused by
using HASM-SOA and the mechanism-based model was combined with the FID by
using HASM-LPJ. The MREs of HASM-SOA and HASM-LPJ were 22.71 and 31.26 %,
respectively.15

The mean annual carbon stocks (MACSs) of all forest types estimated with HASM-
SOA (the best approach) was 7.08 Pg in China during the period 2004–2008. The
MACSs of coniferous, broadleaf and mixed forests were 2.74, 3.95 and 0.39 Pg,
respectively (Table 5). The mean annual carbon densities (MACDs) of the coniferous,
broadleaf and mixed forests were 4.35, 4.74 and 4.20 kgm−2, respectively.20

The land mass of China was next divided into nine regions (Fig. 3) with similar
temperature, precipitation and soil regimes to make it easier to analyze changes
in forest carbon storage from one place to another (Zhou et al., 1981). The nine
regions are referred to as Ri where i = 1 to 9 and we use P1, P2, P3, P4 and P5
to represent the periods 1984–1988, 1989–1993, 1994–1998, 1999–2003 and 2004–25

2008, respectively.
The HASM-SOA estimates showed that 89.9 % of the MACSs were found in the

regions R5, R3, R6, R9 and R7 during the period P5, accounting for 28.61, 28.41,
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14.48, 12.52 and 5.89 % of the MACSs, respectively. The three largest MACDs
occurred in R5 (Tibet plateau; 10.53 kgm−2), R2 (arid area; 6.33 kgm−2) and R3
(northeastern China; 4.44 kgm−2) (Table 6 and Fig. 2e). The two smallest MACDs were
predicted in the R8 (2.14 kgm−2) and R9 (2.60 kgm−2) regions.

The HASM-SOA estimates can be parsed by forest type as well (Table 7). Hence,5

the MACDs of evergreen broad-leaved and evergreen coniferous forests were 6.23 and
4.47 kgm−2, respectively, while the MACDs for deciduous broad-leaved and deciduous
coniferous forests were 3.93 and 3.77 kgm−2, respectively in P5. The MACD of
evergreen forests was 50 % larger than that of deciduous forests, and the MACDs
for broad-leaved forests were greater than those for both coniferous and deciduous10

forests. Turning next to the MACSs, the evergreen coniferous forests contributed the
largest proportion, accounting for 33.05 %, followed by deciduous broad-leaved forests
(29.8 %), and evergreen broad-leaved forests (25.99 %). The deciduous coniferous and
the broad-leaved and coniferous mixed forests accounted for the first two smallest
proportions of the total MACS, 5.65 and 5.51 %, respectively.15

The HASM-SOA estimates also indicate that MACSs rose from 4.84 Pg in P1 to
7.08 Pg in P5 due to the increase of MACD and the expansion of forest area (Table 8).
The MACD rose from 4.00 kgm−2 in P1 to 4.55 kgm−2 in P5 and the forest area
grew from 1.21 millionkm2 in P1 to 1.56 millionkm2 in P5. The increasing trends of the
MACS, MACD and forest area (FA) are captured by the following regression equations:20

MACS(t) = 0.531t+4.297 , R = 0.976 (8)

MACD(t) = 0.125t+3.958 , R = 0.943 (9)

FA(t) = 0.083t+1.1045 , R = 0.96 (10)

where t corresponds to Pt, t = 1, 2, 3, 4 and 5; MACS(t), MACD(t) and FA(t) are
MACS, MACD and FA, respectively in the period Pt; and R represents the correlation25

coefficient for the corresponding regression equation.
Although MACS rose in all nine regions from P1 to P5, the spatial variability over

China more or less mirrors the variability in the distribution of forests (Fig. 4, Table 9).
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For regions R1 and R8, for example, both MACS and MACD have continuously
increased from P1 to P5. R8 has the smallest MACS, which only accounted for 0.83 %
of the MACS of the whole of China, and the smallest MACD of 2.14 kgm−2 in P5 as
well as the lowest CS accumulation rate of 1.3 Tgyr−1. In R1, MACS accounted for
3.94 % of the total MACS of China for the period of P5 and the CS accumulation rate5

has averaged 6.2 Tgyr−1 from P1 to P5.
The region R5 had the largest MACS accounting for 28.61 % of the total MACS

of China in P5, the largest MACD of 10.53 kgm−2 and the fastest CS accumulation
rate of 52 Tgyr−1; the MACS has shown a monotonically increasing trend since P1.
The second largest MACS occurred in R3 (Northeastern China). The MACS in R310

accounted for 28.41 % of the total MACS of China. However, the MACD in R3 has
declined since P3 following increases from P1 to P2 and from P2 to P3. The mean CS
accumulation rate in R3 was 21.3 Tgyr−1.

In the regions R4 (Loess Plateau), R6 and R9, both MACS and MACD have
increased since P3. The MACSs in R4, R6 and R9 accounted for 2.68, 14.48 and15

12.26 % of the MACS in the whole of China in P5, respectively. The average CS
accumulation rates were 2.8, 10.4 and 12.7 Tgyr−1, respectively in R4, R6, and R9. In
R2 (an arid area of China), the MACS accounted for 2.80 % of the total for China in the
period P5. The MACS and MACD increased from P4 to P5, but the mean accumulation
rate of CS was only 2.3 Tgyr−1. The MACS accounted for 5.89 % of the total for China20

in R7. The MACS and MACD both increased from P4 to P5 but like in R2, the mean
CS accumulation rate was relatively low at just 2.9 Pgyr−1.

In terms of forest types, evergreen broad-leaved forests had the fastest CS
accumulation rate and the largest MACD, while evergreen coniferous forests
contributed the largest MACS. The MACSs of broad-leaved forests increased during25

all five periods. The MACS of evergreen broad-leaved forests increased from 0.63 Pg
in period P1 to 1.84 Pg in P5, and the MACSs for deciduous broad-leaved forests rose
from 1.38 Pg in P1 to 2.11 Pg in P5. These trends can be modeled with the following
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regression equations:

MACS1(t) = 0.312t+0.286 , R = 0.998 (11)

MACS2(t) = 0.199t+1.115 , R = 0.981 (12)

where t corresponds to Pt, t = 1, 2, 3, 4 and 5; MACS1(t) and MACS2(t) are
respectively the MACSs of evergreen broad-leaved forests and deciduous broad-5

leaved forests in the period Pt and R represents correlation coefficient of the
corresponding regression equation.

The MACSs of deciduous coniferous forests fluctuated from period to period.
Evergreen coniferous forests and broad-leaved and coniferous mixed forests exhibited
an increasing trend of MACS in general but declined P3. Their trends were modeled10

with the following regression equations:

MACS3(t) = 0.207t+1.391 , R = 0.932 (13)

MACS4(t) = 0.076t−0.068 , R = 0.867 (14)

where t corresponds to Pt, t = 1, 2, 3, 4 and 5; MACS3(t) represents the MACSs of
evergreen coniferous forests in the period Pt; MACS4(t) refers to the broad-leaved and15

coniferous mixed forests; and R represents correlation coefficient of the corresponding
regression equation.

5 Discussion and conclusions

The ground-based national forest inventory is able to accurately estimate forest carbon
stocks with high temporal resolution at sample plots, but these sample plots are too20

sparse to support spatial simulation of carbon stocks with high accuracy. Satellite
remote-sensing can supply spatially continuous information about the surface of forest
carbon stocks, which cannot be obtained from ground-based investigations, but these
remote sensing descriptions contain considerable uncertainty. The fusion of forest
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inventory data with satellite observations achieved with HASM-SOA provided much
more accurate estimates of forest biomass carbon stocks and their changes. This kind
of method can increase our understanding of the role of forests in the carbon cycle,
for greenhouse gas inventories, and terrestrial carbon accounting (Muukkonen and
Heiskanen, 2007).5

Turning to the work at hand, HASM-SOA overcame the shortcomings of both the
ground-based national forest inventory and the satellite remote-sensing observations
by fusing information about the details of the carbon stocks observed on the Earth’s
surface and the variability of the carbon surface observed from space. The cross-
validation demonstrated that HASM-SOA was 26.1 % more accurate than the satellite-10

based approach and 28.4 % more accurate than spatial interpolation of the sample
plots. These findings suggest that China’s forest biomass carbon stocks are more likely
to match our estimates than those generated by past efforts to estimate these same
carbon stocks and their change over time.

Taken as a whole, the HASM-SOA results show that the forest carbon stocks of China15

have increased by 2.24 Pg during the period 1984–2008 to a new high of 7.08 PgC in
2008. These numbers fall in the middle of the previously published estimates. All of
the estimates show forest biomass carbon stocks in China increasing from 1973 to
2008, notwithstanding the various methods used and the varying levels of uncertainty
embedded in these different methods and the data sources used.20
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Table 1. Converted farmland and reforested bare land included in China’s Grain for Green
Program (millions ha).

Year Converted farmland Afforestation on bare land Total

1999 0.381 0.066 0.448
2000 0.405 0.468 0.872
2001 0.42 0.563 0.983
2002 2.647 3.082 5.729
2003 3.367 3.767 7.133
2004 0.667 3.333 4
2005 1.114 1.321 2.435
2006–2010 5.666 4.733 10.4
2014 0.333 0.333
2015 0.667 0.667
1999–2015 15.667 17.333 33
2016–2020 1.827 1.827
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Table 2. Parameters used to calculate BEFs in China (Fang et al., 2007).

Forest type a b Number of R2

(kgm−3) (kgm−2) samples

Abies, Picea 551.9 4.8861 24 0.78
Tsuga, Cryptomeria, Keteleeria 349.1 3.9816 30 0.79
Larix 609.6 3.3806 34 0.82
P. koraiensis 572.3 1.6489 22 0.93
P. sylyestris var. mongolica 1112 0.2695 15 0.85
P. tabulaefomis 869 0.9121 112 0.91
P. armandii 585.6 1.8744 9 0.91
P. massoniana, P. yunnanensis 503.4 2.0547 52 0.87
Cunninghamialanceolata 465.2 1.9141 90 0.94
Cypress 889.3 0.7397 19 0.87
Other pines and conifer forests 529.2 2.5087 19 0.86
Deciduous oaks 1145.3 0.8547 12 0.98
Betula 1068.7 1.0237 9 0.7
Mixed deciduous and Sassafras 978.8 0.5376 35 0.93
Eucalyptus 887.3 0.4554 20 0.8
Casuarina 744.1 3.2377 10 0.95
Populus 496.9 2.6973 13 0.92
Lucidophyllous forests 929.2 0.6494 24 0.83
Nonmerchantable woods 1178.3 0.2559 17 0.95
Mixed conifer and deciduous 813.6 1.8466 10 0.99
Tropical forests 797.5 0.042 18 0.87
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Table 3. CFs of each forest type in China (Li and Lei, 2010).

Forest type CF Forest type CF Forest type CF

Pinuskoraiensis 0.5113 Pinusyunnanensis 0.5113 Tilia 0.4392

Abiesfabri 0.4999 Pinuskesiya var.
langbianensis

0.5224 Sassafras tzumu 0.4848

Piceaasperata 0.5208 Pinusdensata 0.5009 Eucalyptus robusta
Smith

0.5253

Tsugachinensis 0.5022 Cunninghamialanceolata 0.5201 Casuarinaequisetifolia 0.4980

Cupressusfunebris 0.5034 Cryptomeriafortunei 0.5235 Populus 0.4956

Larixgmelinii 0.5211 Metasequoiaglyptostroboides 0.5013 Firmiana 0.4695

Pinussylvestris
var. mongolica

0.5223 Coniferous mixed forest 0.5101 Nonmerchantable
woods

0.4834

Pinusdensiflora 0.5141 Broad-leaved and coniferous
mixed forest

0.4978 Broad-leaved mixed
forest

0.4900

Pinusthunbergii 0.5146 Fraxinusmandschurica,
Juglansmandshurica,
Phellodendronamurense

0.4827 Coppice 0.5000

Pinustabuliformis 0.5207 Cinnamomumcamphora 0.4916

Pinusarmandii 0.5225 Phoebe zhennan 0.5030

Keteleeriafortunei 0.4997 Oaks 0.5004

Pinusmassoniana 0.4596 Betula 0.4914
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Table 4. Comparison of carbon estimates and errors produced with the five different methods.

Methods AMCS MAE MRE
(Pg) (kgm−2) (%)

LPJ 10.53 3.12 79.33
Kriging 7.26 1.97 50.12
SOA 6.55 1.92 48.77
HASM-LPJ 7.34 1.23 31.26
HASM-SOA 7.08 0.89 22.71
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Table 5. Mean annual carbon stocks and carbon densities in China estimated with the five
different methods.

Method Calculation Coniferous Mixed Broadleaf Total
object forests forests forests

LPJ AMCS (Pg) 3.82 0.57 6.14 10.53
AMCD (kgm−2) 6.06 6.18 7.38

SOA AMCS (Pg) 2.48 0.46 3.61 6.55
AMCD (kgm−2) 3.94 4.93 4.34

Kriging AMCS (Pg) 2.76 0.39 4.11 7.26
AMCD (kgm−2) 4.38 4.24 4.94

HASM-LPJ AMCS (Pg) 2.83 0.38 4.13 7.34
AMCD (kgm−2) 4.5 4.09 4.95

HASM-SOA AMCS (Pg) 2.74 0.39 3.95 7.08
AMCD (kgm−2) 4.35 4.2 4.74
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Table 6. MACS and MACD of the forests in the nine regions of China during the periods 2004–
2008 and 1984–1988.

Regions P5 (from 2004 to 2008) P1 (from 1984 to 1988) CS accumulation
rate

AMCD AMCS Percentage AMCD AMCS
(kgm−2) (Pg) (%) (kgm−2) (Pg) (Tgyr−1)

R1 3.710 0.28 3.94 2.666 0.16 6.2
R2 6.330 0.20 2.80 6.358 0.15 2.3
R3 4.445 2.01 28.41 4.493 1.59 21.3
R4 3.274 0.19 2.68 3.035 0.13 2.8
R5 10.525 2.03 28.61 6.718 0.99 52.0
R6 3.671 1.03 14.48 3.734 0.82 10.4
R7 3.693 0.42 5.89 3.643 0.36 2.9
R8 2.138 0.06 0.83 1.515 0.03 1.3
R9 2.598 0.87 12.26 2.358 0.62 12.7

Total 7.08 100 4.84 112
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Table 7. MACSs and MACDs for all forest types during the five periods estimated using HASM-
SOA.

Period Calculation Deciduous Evergreen Broad-leaved Deciduous Evergreen
object coniferous coniferous and coniferous broad-leaved broad-leaved

forests forests mixed forests forests forests

P1 AMCS (Pg) 0.41 1.50 0.06 1.38 0.63
AMCD (kgm−2) 4.35 3.81 3.08 3.75 4.35

P2 AMCS (Pg) 0.39 1.80 0.09 1.44 0.87
AMCD (kgm−2) 4.28 4.13 3.75 3.77 5.65

P3 AMCS (Pg) 0.44 2.23 0.07 1.66 1.20
AMCD (kgm−2) 4.20 4.09 3.03 3.87 6.35

P4 AMCS (Pg) 0.47 2.19 0.19 1.97 1.57
AMCD (kgm−2) 4.37 4.40 5.18 3.89 7.49

P5 AMCS (Pg) 0.40 2.34 0.39 2.11 1.84
AMCD (kgm−2) 3.77 4.47 4.20 3.93 6.22
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Table 8. MACSs and MACDs estimated for the whole China excluding Taiwan, Hong Kong and
Macao during the five periods using HASM-SOA.

Periods Area AMCS AMCD
(millionkm2) (Pg C) (kgCm−2)

P1 1.2101 4.84 4.001
P2 1.2864 5.55 4.315
P3 1.2920 5.60 4.334
P4 1.4279 6.38 4.469
P5 1.5559 7.08 4.55
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Table 9. MACSs and MACDs estimated for the five periods and nine regions with HASM-SOA.

Regions P1 P2 P3 P4 P5
AMCD AMCS AMCD AMCS AMCD AMCS AMCD AMCS AMCD AMCS

(kgm−2) (Pg) (kgm−2) (Pg) (kgm−2) (Pg) (kgm−2) (Pg) (kgm−2) (Pg)

R1 2.67 0.16 2.71 0.17 2.88 0.17 2.98 0.20 3.71 0.28
R2 6.36 0.15 6.27 0.16 6.25 0.15 6.23 0.18 6.33 0.20
R3 4.49 1.59 4.42 1.64 4.50 1.64 4.43 1.77 4.44 2.01
R4 3.04 0.13 3.23 0.15 3.13 0.14 3.15 0.16 3.27 0.19
R5 6.72 0.99 10.15 1.57 10.83 1.64 11.49 1.94 10.53 2.03
R6 3.73 0.82 3.78 0.87 3.66 0.82 3.88 0.96 3.67 1.03
R7 3.64 0.36 3.79 0.39 3.66 0.37 3.54 0.40 3.69 0.42
R8 1.52 0.03 1.64 0.04 1.89 0.04 1.89 0.05 2.14 0.06
R9 2.36 0.62 2.05 0.56 2.30 0.62 2.51 0.73 2.60 0.87

The whole of China 4.00 4.84 4.32 5.55 4.33 5.60 4.47 6.38 4.55 7.08
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Figure 1. The updated forest cover map of in China.
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Figure 2. The spatial distribution of forest biomass MACDs estimated during the period 2004–
2008 in China using: (a) Kriging; (b) SOA; (c) LPJ; (d) HASM-SOA; and (e) HASM-LPJ.
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Figure 3. Map showing the nine regions of China used for detailed analysis.
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Figure 4. The spatial distribution of forest MACDs in China estimated during the five periods
using HASM-SOA: (a) 1984–1988 (P1); (b) 1989–1993 (P2); (c) 1994–1998 (P3); (d) 1999–
2003 (P4); and (e) 2004–2008 (P5).
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